
www.manaraa.com

ACM Transactions on Programming Languages and Systems, 17(2) pp. 233-263, Mar. 1995

ANNE ROGERS and MARTIN C. CARLISLE

Princeton University

JOHN H. REPPY

AT&T Bell Laboratories

and

LAURIE J. HENDREN

McGill University

Compiling for distributed-memory machines has been a very active research area in recent years.
Much of this work has concentrated on programs that use arrays as their primary data structures.
To date, little work has been done to address the problem of supporting programs that use pointer-
based dynamic data structures. The techniques developed for supporting SPMD execution of
array-based programs rely on the fact that arrays are statically de�ned and directly addressable.
Recursive data structures do not have these properties, so new techniques must be developed.
In this article, we describe an execution model for supporting programs that use pointer-based
dynamic data structures. This model uses a simple mechanism for migrating a thread of control
based on the layout of heap-allocated data and introduces parallelism using a technique based on
futures and lazy task creation. We intend to exploit this execution model using compiler analyses
and automatic parallelization techniques. We have implemented a prototype system, which we
call Olden, that runs on the Intel iPSC/860 and the Thinking Machines CM-5. We discuss our
implementation and report on experiments with �ve benchmarks.

Categories and Subject Descriptors: D.1.3 [Software]: Concurrent Programming|parallel pro-
gramming; D.3.4 [Software]: Processors|compilers; run-time environments

General Terms: Languages, Performance

Additional Key Words and Phrases: Dynamic data structures

A. Rogers was supported, in part, by NSF Grant ASC-9110766. M. C. Carlisle was supported, in
part, by a National Science Foundation Graduate Fellowship, the Fannie and John Hertz Foun-
dation, and NSF Grant ASC-9110766. L. J. Hendren was supported, in part, by FCAR, NSERC,
and the McGill Faculty of Graduate Studies and Research.
Authors' addresses: A. Rogers and M. C. Carlisle, Department of Computer Science, Prince-
ton University, Princeton, NJ 08540; email: famr; mccg@cs.princeton.edu; J. H. Reppy, AT&T
Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974; email: jhr@research.att.com;
L. J. Hendren, School of Computer Science, McGill University, Montreal, Que, Canada, H3A 2A7;
email: hendren@cs.mcgill.ca.
Permission to copy without fee all or part of this material is granted provided that the copies are
not made or distributed for direct commercial advantage, the ACM copyright notice and the title
of the publication and its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or
speci�c permission.
c
 1995 ACM 0164-0925/95/0300-0233 $03.50

www.manaraa.com

2 � A. Rogers et al.

1. INTRODUCTION

Compiling for distributed-memory machines has been a very active area of research
in recent years.1 Much of this work has concentrated on scienti�c programs that
use arrays as their primary data structure and loops as their primary control struc-
ture. Such programs tend to have the property that the arrays can be partitioned
into relatively independent pieces, and therefore the operations performed on these
pieces can proceed in parallel. It is this property of scienti�c programs that has
led to impressive results in the development of vectorizing and parallelizing com-
pilers [Allen and Kennedy 1987; Allen et al. 1988; Wolfe 1989]. More recently, this
property has been exploited by researchers investigating methods for automatically
generating parallel programs for SPMD (Single-Program, Multiple-Data) execu-
tion on distributed-memory machines. In this article, we address the problem of
supporting programs that operate on recursively de�ned dynamic data structures.
Such programs typically use list-like or tree-like data structures, and have recursive
procedures as their primary control structure.
Before we examine if it is plausible to generate SPMD programs for recursive

programs using dynamic data structures, let us �rst review why it is possible for
scienti�c programs that use arrays and loops, and then point out the fundamental
problems that prevent us from applying the same techniques to programs with
pointer-based dynamic data structures.
From a compilation standpoint, the most important property of a distributed-

memory machine is that each processor has its own address space; remote references
are satis�ed through explicitly passed messages, which are expensive. Therefore,
arranging a computation so that most references are local is crucial to e�cient
execution. The aforementioned properties of scienti�c programs make them ideal
applications for distributed-memory machines. Each group of related data can be
placed on a separate processor, which allows operations on independent groups to
be done in parallel with little interprocessor communication.
The key insight underlying recently developed methods for automatically paral-

lelizing programs for distributed-memory machines is that the layout of a program's
data should determine how the work in the program is assigned to processors. Typ-
ically, the programmer speci�es a mapping of the program's data onto the target
machine, and the compiler uses this mapping to decompose the program into pro-
cesses. The simplest compilation strategy, sometimes called run-time resolution,
inserts code to determine at run-time which processor needs to execute a partic-
ular statement. Di�erent policies for allocating work are possible, but the most
popular is the owner computes rule: the work of an assignment statement (v = e),
including the computation of e, is assigned to the processor that \owns" v. Con-
trol statements such as conditionals and loops are executed by all processors. The
code produced by this method can be improved substantially using the arsenal of
techniques developed for vectorizing compilers, such as data dependence analysis
and loop restructuring [Allen and Kennedy 1987; Wolfe 1989].

1For example, see Amarasinghe and Lam [1993], Anderson and Lam [1993], Callahan and Kennedy
[1988], Gerndt [1990], Hiranandani et al. [1991], Koelbel [1990], Rogers and Pingali [1989], and
Zima et al. [1988].

www.manaraa.com

Supporting Dynamic Data Structures on Distributed-Memory Machines � 3

Run-time resolution works because arrays are static in nature, that is, names are
available for all elements of an array at compile-time. To determine the processor
responsible for a given array element, the programmer-supplied mapping function
is applied to the array element's global name. Since every processor knows the
global name of every array element, this test can be done locally without commu-
nication. Techniques for improving run-time resolution code rely on the fact that
the expressions used to reference array elements tend to be very simple and have
nice mathematical properties.
Now let us return to our problem of parallelizing programs that use pointer-based

dynamic data structures. We note that such programs often exhibit the required
property that their data structures can be partitioned into relatively independent
pieces. For example, a tree can be recursively partitioned into smaller, independent
subtrees, and a list can be recursively partitioned into its head and its tail. Fur-
thermore, this partitioning can often be used to distribute parallel tasks over the
subpieces. Thus, so far, we see no fundamental problem in mapping these programs
to distributed-memory machines. But, with further investigation, it becomes clear
that the techniques used for scienti�c programs do not work for dynamic data struc-
tures. The �rst problem is that determining the independence of operations on a
dynamic data structure is substantially harder than determining the independence
of array operations. This is partially because the nodes of a dynamic data struc-
ture do not have compile-time names, and therefore references to a structure do
not share the nice mathematical properties of array references. Second, recursion,
rather than looping with its easily partionable index sets, is the primary control
structure used with dynamic data structures. Finally, without compile-time names,
the mapping of nodes to processors cannot be done statically, and the owner of a
node cannot be determined, in general, without interprocessor communication.
A recent paper by Gupta [1992] suggests a mechanism for addressing the problem

of global names so that an approach similar to run-time resolution can be used.
In his approach, a global name is assigned to every element of a dynamic data
structure, and this name is made known to all processors. To accomplish this,
a name is assigned to each node as it is added to a data structure. This name
is determined by the node's position in the structure and is registered with all
processors as part of adding it to the structure. The mapping of a node to a
processor is also based on its position in the tree. As an example, a breadth-�rst
numbering of the nodes might be used as a naming scheme for a binary tree. Once a
processor has a name for the nodes in a data structure, it can traverse the structure
without further communication.
It is important to note that this new way of naming dynamic data structures

leads to restrictions on how the data structures can be used. Since the name of a
node is determined by its position, only one node can be added to a structure at
a time (for example, two lists cannot be concatenated). Another rami�cation of
Gupta's naming scheme is that node names may have to be reassigned when a new
node is introduced. For example, consider a list in which a node's name is simply
its position in the list. If a node is added to the front of the list, the rest of the
list's nodes will have to be renamed to re
ect their change in position.
As in earlier approaches, we rely on the programmer to specify a mapping of the

data onto the processors. This mapping is done at run-time by specifying a proces-

www.manaraa.com

4 � A. Rogers et al.

sor name with every memory allocation request. They key di�erence between our
approach and earlier approaches is the mechanism for assigning work to processors.
We believe that run-time resolution, which was developed to support statically de-
�ned, directly addressable rectangular arrays, is inappropriate for pointer-based
dynamic data structures, which are neither statically de�ned nor directly address-
able. We propose a more dynamic approach that is better matched to the dynamic
nature of the data structures themselves. Rather than making each processor decide
if it owns the data, we send the computation to the processors that own the data.
Thus, as a dynamic structure is recursively traversed, the computation migrates to
the processor that owns that part of the structure.
Before presenting our execution model, we review the basic SPMD model and

our programming model. In Section 3, we present the two parts of our execution
model: a simple mechanism for migrating a thread of control based on the layout
of heap-allocated data and a technique for introducing parallelism based on futures
and lazy task creation [Mohr et al. 1991]. We consider an example in Section 4
and discuss our prototype system, which we call Olden, in Section 5. In Section
6, we report results for �ve benchmarks using implementations of the execution
model for the Intel iPSC/860 and the Thinking Machines CM-5. In Section 7, we
brie
y sketch the compiler analyses and parallelization techniques that we intend
to use to transform a sequential program automatically into a program that can
take advantage of our execution model. Finally, we discuss related work in Section
8 and conclusions in Section 9. This article expands upon our earlier work [Carlisle
et al. 1994; Rogers et al. 1993].

2. THE SPMD MODEL

Before we explain the details of our approach, let us review the basic SPMD and
programming models that we are using.
In our SPMD model, each processor has an identical copy of the program, as

well as a local stack that is used to store procedure arguments, local variables, and
return addresses. In addition to these local stacks, there is a distributed heap; each
processor owns part of the heap. We view a heap address as consisting of a pair of
a processor name and a local address (<p, l>). This information is encoded as a
single machine address.
Our programming model is based on a restricted form of C. For simplicity, we

assume that there are no global variables (these could be put in the distributed
heap). We also require that programs do not take the address of stack-allocated
objects, which ensures that there are no pointers into the processor stacks. The ma-
jor di�erence between our programming model and the standard sequential model
is that the programmer chooses explicitly a particular strategy to map the dynamic
data structures over the distributed heap. This mapping is achieved by including
a processor number in each allocation request. Figure 1 contains an example al-
location routine that builds a tree such that the subtrees at some �xed depth are
equally distributed over all processors. ALLOC is a library routine that allocates
space on a speci�ed processor. ALLOC's result is a pointer that encodes both the
processor name and the local address on that processor where the requested space
has been allocated. Figure 2 shows the distribution of a balanced binary tree that
would be created by a call to TreeAlloc on four processors with lo equal to zero.

www.manaraa.com

Supporting Dynamic Data Structures on Distributed-Memory Machines � 5

typedef struct tree {

int val;

struct tree *left, *right;

} tree;

/* Allocate a tree with level levels on processors lo..lo+num_proc-1 */

tree *TreeAlloc (int level, int lo, int num_proc)

{

if (level == 0)

return NULL;

else {

tree *new, *right, *left;

int mid, lo_tmp;

new = (tree *) ALLOC(lo, sizeof(struct tree));

new->val = 1;

new->left = TreeAlloc(level-1, lo+num_proc/2, num_proc/2);

new->right = TreeAlloc(level-1, lo, num_proc/2);

return new;

}

}

Fig. 1. Allocation code.

3 2 1 0

2 0

0

Fig. 2. Allocation example.

www.manaraa.com

6 � A. Rogers et al.

3. EXECUTION MODEL

This section describes the two parts of our execution model: thread migration and
thread splitting. Thread migration is a mechanism for migrating a thread of con-
trol through a set of processors based on the layout of heap-allocated data. Thread
splitting, which is based on continuation capturing operations, is used to intro-
duce parallelism by providing work for a processor when the thread it is executing
migrates.

3.1 Thread Migration

The basic idea of thread migration is that when a thread executing on Processor
P attempts to access a location residing on Processor Q, the thread is migrated
from P to Q. Full thread migration entails sending the current program counter,
the thread's stack, and the current contents of the registers to Q. Processor Q then
sets up its stack, loads the registers, and resumes execution of the thread at the
instruction that caused the migration. Processor P remains idle until another (or
the same) thread migrates to it.

Recall that we view a memory address as consisting of a pair of a processor
name and a local address. This information can be encoded as a single address,
and the address translation hardware can be used to detect nonlocal references
[Appel and Li 1991]. When Processor P executes a load or store instruction that
refers to Q's memory, the instruction traps to a library routine. The trap handler
is responsible for packaging up the thread's state information and sending it to
Processor Q. Notice that if the entire stack is sent with the thread, stack references
will always be local and cannot cause a migration. In our current implementation,
we do not use the address translation hardware to detect nonlocal accesses. Instead,
the compiler inserts explicit checks into the code to test the encoded pointer and
migrate the thread as needed.

Full thread migration is quite expensive, because the thread's entire stack is
included in the message. To make thread migration a�ordable, we send only the
portion of the thread's state that is necessary for the current procedure to complete
execution: the registers, program counter, and current stack frame. When it is
time to return from the procedure, it is necessary to return control to Processor
P , because it has the stack frame of the caller. To accomplish this, Q sets up a
stack frame for a special return stub to be used in place of the return to the caller.
This frame holds the return address and the return frame pointer for the currently
executing function. The stub migrates the thread of computation back to P by
sending a message that contains the return address, the return frame pointer, and
the contents of the registers. Processor P then completes the procedure return
by restarting the thread at the return address. Note that the stack frame is not
returned, because it is no longer needed.

3.1.1 Allocation. Recall that the programmer is responsible for specifying a pro-
cessor name with each memory allocation request. The allocation routine, which is
part of our run-time system, explicitly migrates the thread when a nonlocal alloca-
tion is requested. The Olden compiler expands this migration test in-line to ensure
that the object initialization can be also completed before the thread migrates back
to the processor that initiated the allocation.

www.manaraa.com

Supporting Dynamic Data Structures on Distributed-Memory Machines � 7

3.1.2 Discussion. The primary purpose of migrating the thread of computation
to the processor that owns the data rather than migrating the data is to exploit
locality. Our system relies on the programmer to choose a layout that places related
data together, for example, by placing all the data in a subtree at some �xed
depth in the tree on the same processor. If the programmer has chosen a good
data layout, then migrating the computation to the data allows the system to
perform the computation on the processor that owns most of the required data.
This can reduce the amount of interprocessor communication substantially and
thereby reduce execution time. Recent work by Hsieh et al. [1993] supports this
claim.

3.2 Thread Splitting

While the migration scheme provides a mechanism for operating on distributed
data, it does not provide a mechanism for extracting parallelism from the compu-
tation. When a thread migrates from Processor P to Q, P is left idle. In this
section, we describe a mechanism for introducing parallelism. Our approach is to
introduce continuation-capturing operations at key points in the program. When
a thread migrates from P to Q, Processor P can start executing one of the cap-
tured continuations. The natural place to capture continuations is at procedure
calls, since the return linkage is e�ectively a continuation. This provides a fairly
inexpensive mechanism for labeling work that can be done in parallel. In e�ect,
this capturing technique chops the thread of execution into many pieces that can
be executed out of order. Thus the introduction of continuation-capturing oper-
ations must be based on analysis of the program, which can be done either by a
parallelizing compiler targeted for Olden or by a programmer using Olden directly.

3.2.1 Futures. Our continuation-capturing mechanism is essentially a variant of
the future mechanism found in many parallel Lisps [Halstead 1985]. In the tra-
ditional Lisp context, the expression (future e) is an annotation to the system
that says that e can be evaluated in parallel with its context. The result of this
evaluation is a future cell that serves as a synchronization point between the child
thread that is evaluating e and the parent thread. If the parent touches the future
cell, that is, attempts to read its value, before the child is �nished, then the parent
blocks. When the child thread �nishes evaluating e, it puts the result in the cell
and restarts any blocked threads.
Our view of futures, which is in
uenced by the lazy-task-creation scheme of Mohr

et al. [1991], is to save the future call's context (return continuation) on a work list
and to evaluate the future's body directly.2 If a migration occurs in the execution
of the body, then we grab a continuation from the work list and start executing it;
this is called future stealing. In addition, all touches in Olden are done explicitly
using the touch operation.

3.2.2 Futures in More Detail. Our scheme for introducing parallelism consists
of two operations: futurecall and touch. In the remainder of this section, we
describe these operations and their related data structures. The two data structures
are the future cells and the future stack, which is a stack of future cells that serves

2This is also similar to the workcrews paradigm proposed by Roberts and Vandevoorde [1989].

www.manaraa.com

8 � A. Rogers et al.

Empty

Stolen

dispatch

Full

return

Waiting
touch

return

return

Fig. 3. Future cell state transitions.

as a work list. A future cell can be in one of four states (Figure 3 gives the allowable
state transitions for a future cell):

Empty : This is the initial state and contains the information necessary to restart
the parent.

Stolen: This is the state when the parent continuation has been stolen.

Waiting : This is the state when the parent continuation has been stolen and sub-
sequently touched the future. It contains the continuation of the blocked
thread (note: no future can be touched by more than one thread).

Full : This is the �nal state of a future cell, which contains the result of the
computation.

The future stack is threaded through the execution stack. In the normal case,
when no migration or stealing occurs, only a few extra instructions are required to
allocate the future cell and touch the result (see Section 5 for details).

The futurecall operation is responsible for allocating a new future cell, pushing
the cell on the future stack, and calling the speci�ed routine. Upon return from
the routine, the cell is �lled with the return result, following an examination of
the cell's state. If the cell is Empty, then the cell is popped o� the future stack,
and execution continues normally; otherwise the corresponding continuation has
been stolen, and the cell is either in the Stolen or Waiting state. In the Stolen
case, there is nothing more to do, and the run-time system routine MsgDispatch is
called; in the Waiting state, the waiting continuation is resumed.

When a processor has no work to do, such as just after a thread migration, it calls
the run-time system routine MsgDispatch. This routine does the actual stealing
of continuations from the future stack. If the stack is not empty, it pops a future
cell from the top of the stack and executes the resume continuation in the cell. To
signal that the parent continuation has been stolen, the state of the future cell is
changed to Stolen.

Touching a future that is not Full causes the currently executing thread of com-
putation to block. The touch operation changes the state of the future from Stolen
to Waiting, stores the continuation of the touch in the cell, and looks for other
work to do by calling MsgDispatch. The model requires that only one touch be
attempted per future and that touch must be done by the future's parent thread of
computation. As a result, the state of a future will be either Stolen or Full when
a touch is attempted.

www.manaraa.com

Supporting Dynamic Data Structures on Distributed-Memory Machines � 9

int TreeAdd (tree *t)

{

if (t == NULL)

return 0;

else

return (TreeAdd(t->left) + TreeAdd(t->right) + t->val);

}

Fig. 4. TreeAdd.

3.2.3 Discussion. The design of futures in Olden was in
uenced heavily by our
intent to use parallelizing compiler technology [Hendren 1990; Hendren and Nicolau
1990; Hendren et al. 1992; Larus 1991] to insert them automatically. Both the
restrictions mentioned in the previous paragraph follow from this intention. These
two restrictions allow us to allocate future cells on the stack rather than the heap,
which helps make futures less expensive.
Another important fact to note about the use of futures in Olden is that when

a process becomes idle, it steals work only from its own worklist. A process never
removes work from the worklist of another process. The motivation for this design
decision was our expectation that most futures captured by a process would operate
on local data. Although allowing another process to steal this work may seem de-
sirable for load-balancing purposes, it would simply cause unnecessary migrations.
Instead, load balancing is achieved by a careful data layout. This is in contrast to
Mohr et al.'s formulation, where an idle processor removes work from the tail of
another process' work queue.
The choice of using a queue versus a stack to hold pending futures is related to

the question of who can steal work from a processor's worklist. The breadth-�rst
decomposition that results from using a work queue is desirable when work can be
stolen by another process, because it tends to provide large granularity tasks. A
stack-based implementation is appropriate for Olden, because when a process steals
its own work, it is better for it to steal work that is needed sooner rather than later.

4. A SIMPLE EXAMPLE

To make the ideas of the previous two sections more concrete, we present a simple
example.3 Figure 4 gives the C code for a prototypical divide-and-conquer program,
which computes the sum of the values stored in a binary tree.
Figure 5 gives a semantically equivalent program that has been annotated with

futures. In the annotated version, the left recursive call to TreeAdd has been
replaced by a futurecall,4 and the result is not demanded until after the right
recursive call.
To understand what this means in terms of the program's execution, consider

the case where a tree node tP (on Processor P) has a left child tQ (on Processor
Q). When TreeAdd, executing on P , is recursively called on tQ, it attempts to

3We present more realistic benchmarks in Section 6.
4Note that using a futurecall on the right subtree is not cost e�ective, since there is very little
computation between the return from TreeAdd and the use of its result.

www.manaraa.com

10 � A. Rogers et al.

int TreeAdd (tree *t)

{

if (t == NULL)

return 0;

else {

tree *t_left;

future_cell f_left;

int sum_right;

t_left = t->left; /* this can cause a migration */

f_left = futurecall (TreeAdd, t_left);

sum_right = TreeAdd (t->right);

return (touch(f_left) + sum_right + t->val);

}

}

Fig. 5. TreeAdd code with compiler annotations.

fetch the left child of tQ, which causes a trap to the run-time system. This will
cause the thread of control to migrate to Processor Q, where it can continue exe-
cuting. Meanwhile, execution resumes on Processor P at the return point of the
futurecall. Assuming that the right subtree of tP is on Processor P , execution
of the stolen future continues until it attempts to touch the future cell associated
with the call on tQ. At this point, execution must wait for the thread of control to
return from Processor Q.
Please note that neither the reference to t->right nor the reference to t->val

can be the source of a migration. Once a nonlocal reference to t->left causes
the computation to migrate to the owner of t, the computation for the currently
executing function will remain on the owner of t until it has completed.

5. EXECUTION MODEL IMPLEMENTATION

We have implemented prototypes of our execution model that run on the Intel
iPSC/860 hypercube and the Thinking Machines CM-5. As mentioned earlier,
we call our system Olden. The input to Olden is a C program annotated with
futurecalls and touches. Olden consists of a run-time system and a compiler
that translates annotated C code into the assembly code for the target machine
with embedded calls to the run-time system. The run-time system handles migra-
tions, returns from migrations, and starts new computations by stealing futures.
The compiler generates code for futures, touches, and pointer tests, and it uses
a nonstandard stack discipline to support multiple active threads of computation.
We describe the two parts of the system in detail in this section.

5.1 The Run-Time System

Figure 6 provides an overview of the control structure of the run-time system.
The main procedure is MsgDispatch, which is responsible for assigning work to a
processor when it becomes idle. Captured empty futures are given �rst priority,

www.manaraa.com

Supporting Dynamic Data Structures on Distributed-Memory Machines � 11

Nonempty

local

local pointer CallStub

 return

Touch stolen future

Migration on Migration on return

reference

 future return

CallStub User

Code

 Steal

MsgDispatch

Migrate

MigrateReturn

Suspend

Non-

Local
Waiting

Stolen

Non-

Retaddr
 Stolen1

Resume

Fig. 6. The run-time system.

then messages from other processors in the order received. We choose this priority
scheme, because early in a computation a future is likely to spin o� work to other
processors. Processing futures �rst allows us to get work to idle processors sooner.

The run-time system processes four di�erent events: migrate on reference, mi-
grate on return, steal future, and suspend touch. We focus on migration �rst; we
discuss the implementation of futures in the next subsection.

5.1.1 Migrate on Reference. As previously mentioned, a thread will migrate if it
attempts to dereference a nonlocal pointer. The code to test the pointer and call
Migrate, if necessary, is inserted by the compiler. Migrate packages the necessary
data and sends it to the appropriate processor. A migration message contains the
current stack frame, the argument build area of the caller, the contents of callee-
save registers,5 and some bookkeeping information. We allocate extra space in
each stack frame for the callee-save registers and bookkeeping information, which
allows us to construct messages in situ, reducing the cost of migrations. Once the
migration is complete, the sending processor calls MsgDispatch to assign a new
task.

When MsgDispatch selects an incoming migration message as the next task, it
transfers control to CallStub to process the message. CallStub allocates space on
the stack for a return message, the frame, the argument build area, and a stub frame.
Then it copies the migration message into the allocated space. CallStub stores the
frame size, return value size, and frame pointer from the migration message into the
space allocated for the return message. Then it loads the callee-save register values
from the message, adjusts the pointers to the return area and the argument build
area (if they exist), and changes the return address stored in the frame to retaddr,
the stub return procedure. Finally, it loads the pointer causing the migration, the
frame pointer, and the program counter into the appropriate registers and resumes
the migrated function on the new processor. When this procedure exits, it will go

5We bypass the SPARC'S register window mechanism in our CM-5 implementation. As a result,
we have callee-save registers.

www.manaraa.com

12 � A. Rogers et al.

to the procedure retaddr. This code stores the values of the callee-save registers
in the return message, sends the message to the processor that began execution of
the procedure, and calls MsgDispatch.
A simple optimization is added to avoid a chain of trivial returns in the case that

a thread migrates several times during the course of executing a single function.
Migrate examines the current return address of the function to determine whether
it points to the return stub. If so, the original return address, frame pointer,
and node id are pulled from the stub's frame and passed as part of the migration
message. This is analogous to a tail-call optimization and is similar to the tail-
forwarding optimization used in the Concurrent Smalltalk compiler [Horwat et al.
1989]. A similar optimization is that the return message is not sent if a migrated
procedure exits on the same processor as it began (for example, it migrated from
P to Q then back to P): MigrateReturn is called directly instead.

5.1.2 Migrate on Return. When MsgDispatch selects a return message as the
next task, it calls MigrateReturn, which loads the contents of the callee-save reg-
isters from the message, deactivates the frame of the procedure that migrated, and
copies the return value to the appropriate place, if necessary. It then resumes ex-
ecution at the return address of the procedure that migrated. Note that since the
procedure exited on the remote processor before the migrate on return, the state
of the callee-save registers will be the same as before the procedure was called.

5.2 The Compiler

The compiler is derived from lcc [Fraser and Hanson 1995], an ANSI C compiler.6

We ported the backend to the appropriate processors (i860 and SPARC) and added
modi�cations to handle our execution model. These modi�cations generate code
to test for nonlocal memory references and call Migrate as necessary, to capture
futures, and to synchronize on touches.

5.2.1 Testing Memory References. As previously mentioned, a process will mi-
grate on a reference if it attempts to dereference a nonlocal heap pointer. In our
implementation, heap pointers consist of a tag indicating the processor where the
data resides7 and a local address, so it is necessary to check the tag explicitly on
each heap pointer dereference. lcc has a command-line option for generating null
pointer checks on all pointer dereferences. We modi�ed this mechanism to generate
code that examines the tag to see if the pointer is local, calls the library routine
Migrate conditionally to move the thread, and removes the tag to reveal the local
address.
The additional overhead of testing each pointer dereference is three integer in-

structions and a conditional branch on the i860 and four integer instructions and
a conditional branch on the SPARC. This overhead can be reduced by observing
that only the �rst reference in a sequence of references to the same pointer can
cause a migration. For example, in TreeAdd, only the reference t->left can cause

6lcc does not have an optimizer.
7The range of possible heap addresses dictates the maximum size of the processor tags. The CM-5
implementation uses the seven high-order bits to hold the tag, and the iPSC/860 implementation
uses the eight high-order bits.

www.manaraa.com

Supporting Dynamic Data Structures on Distributed-Memory Machines � 13

int TreeAdd (tree *t)

{

if (t == NULL)

return 0;

else {

tree *t_left, *local_t;

future_cell f_left;

int sum_right;

local_t = local(t); /* this can cause a migration */

t_left = local_t->left;

f_left = futurecall (TreeAdd, t_left);

sum_right = TreeAdd (local_t->right);

return (touch(f_left) + sum_right + local_t->val);

}

}

Fig. 7. TreeAdd code using local.

a migration (as discussed in Section 4). All subsequent indirect references through
t are guaranteed to be local.8 The Olden compiler provides an annotation, local,
which allows us to take advantage of this observation. The expression local(t)
removes the pointer tag and forces a migration if t is nonlocal. Subsequent indirect
references can use the resulting local pointer.
A simple compiler optimization can take advantage of this construct. We say

that a dereference of some pointer variable t is aligned with another dereference of
t, if it is dominated by that reference and if there are no intervening references to
other pointers. A dominating reference, that is, the �rst reference in the sequence,
can be annotated with local. The resulting local address can be used by the
aligned references directly. The code in Figure 7 shows the result of applying this
optimization to the TreeAdd example. Note that the deferences of local_t require
no special handling.

5.2.2 Compiling futurecall. In Section 3.2, we presented the basic ideas un-
derlying our use of futures. In this subsection, we return to the topic of futures to
examine our implementation in detail. We review the steps necessary to implement
future calls and then discuss several optimizations.
When the backend encounters a futurecall annotation, it generates in-line code

to store the continuation (which consists of the callee-save registers, the frame
pointer, and the program counter) in the future cell, initialize the cell's state to
Empty, and push the cell onto the future stack. Then the call is generated. After
the call, code is generated in-line to store the return value in the future cell, and
check the state of the future. If it is Empty, the cell is popped from the stack, and
execution continues.

8Note that this observation relies on the fact that function calls return always to the original
processor on exit from the called routine.

www.manaraa.com

14 � A. Rogers et al.

In the case that the cell is not Empty (that is, the called function or one of its
descendants migrated), we test to see whether the future is Stolen or Waiting.
If it is Stolen, then MsgDispatch is called to assign work to the processor. If it
is Waiting, there must have been a touch on this future cell. We describe how to
resume a waiting thread of computation in the next subsection.
As described, the overhead of future calls is quite large. It is imperative for the

capturing of futures to be inexpensive, because most future calls do not contribute
parallelism. A future generates parallelism only if the called function (or one of its
descendants) migrates. Whether the called function migrates depends on the size
and layout of the data structure. A common situation is for the called function to
migrate early in a sequence of recursive calls, but then to remain �xed later in the
sequence. We have implemented a series of optimizations to reduce the overhead
of futurecalls.
Our �rst optimization, called register unwinding, eliminates the cost associated

with saving callee-save registers at the expense of increasing the cost of steals. This
tradeo� is pro�table, because stealing a future is much less common than capturing
one. Register unwinding exploits the fact that MsgDispatch gives stealing futures
the highest priority. A descendant of the function, f , associated with the future cell
must have been executing immediately before the steal. Therefore, the state of the
callee-save registers may be restored by executing the restores of callee-save registers
for each procedure in the call chain from the user code function last executing to
the function f .
To implement register unwinding, we generate a callee-save restore sequence for

each procedure, and store its address at each call site in the procedure. Then,
when stealing a future, we traverse the list of frame pointers to the frame that
contains the future cell, executing each callee-save restore sequence as we go. Since
the address of a restore sequence is stored at the appropriate call site, it can be
obtained by reading a word at a constant o�set from the return address stored in
the frame. For example, consider the scenario show in Figure 8. When H migrates,
the run-time system will execute the callee-save restore sequence for H, and then G.
Once this is done, the callee-save registers will contain their original values.
A second optimization is to eliminate the need for storing the state Empty in

the future cell. The return address for a future call is initially set to the sequence
of instructions for an Empty future cell. When a future cell is stolen, the return
address of the called function is modi�ed to point to code which will test for Stolen
or Waiting, and perform the appropriate action.
Given these optimizations, the overhead of a future call on the i860 is only seven

instructions (four stores, two integer instructions, and one load) in the expected
case where the future cell is not stolen.
On the CM-5, we have implemented two additional optimizations. The �rst

allows us to eliminate the store of the frame pointer on entry. We notice that since
the future cell is stored in the frame of the caller, we can determine the frame
pointer during register unwinding. The frame pointer of the parent continuation
is simply the �rst frame pointer in the chain with an address that precedes the
address of the future cell (see Figure 8).
The second takes advantage of the facts that the future stack is threaded through

the execution stack using a linked list and that future cells are four-byte aligned, to

www.manaraa.com

Supporting Dynamic Data Structures on Distributed-Memory Machines � 15

fp

fp

G

H

fc

F
F performs futurecall(G,...)

G calls H

H migrates

ret addr

ret addr

ret addr

Fig. 8. Register unwinding example.

eliminate another store. We store the state information in the last two bits of the
future cell's link �eld. By representing the Empty and Full states as zero, we get
the state information stored for free when we set the link �eld (because it contains
a four-byte-aligned pointer). Then, on a steal the link �eld is no longer necessary,
and we may reuse the bottom two bits to hold state information.
Given these optimizations, a futurecall on the CM-5 requires only �ve instruc-

tions (two stores, two integer instructions, and one load) in the case when the
future is not stolen. The Appendix contains sample futurecall code for both the
iPSC/860 and CM-5 implementations.

5.2.3 Compiling touch. The touch annotation generates in-line code to synchro-
nize on the state of the future cell. If the state is Full, then the touching thread
continues; otherwise the library routine Suspend is called. Suspend stores the val-
ues of the callee-save registers, the frame pointer, and the program counter in the
future cell, marks the cell as Waiting, and calls MsgDispatch to assign work to
the processor. When the future call returns and �nds the cell marked Waiting, it
loads the registers, frame pointer, and program counter from the suspended cell,
and resumes execution of the procedure.

5.3 Stack Management

In the discussion thus far, we have glossed over certain details related to stack
management. When a future is stolen, the portion of the stack between the frame
belonging to the stolen continuation and the frame that migrated must be preserved
for when the migrated thread returns. The stolen continuation may allocate new
stack frames, which could overwrite the frames of the migrated thread if we used a
simple stack management policy. To avoid this problem, we adopt a simpli�cation of
a single-stack technique for multiple environments by Bobrow and Wegbreit [1973].
Bobrow and Wegbreit's method, called spaghetti stacks, splits a frame into a

basic frame, which can be shared among several access modules, and an extension,

www.manaraa.com

16 � A. Rogers et al.

F

d

e

sp

F

d

e

sp

F

d

e

G

sp

Fig. 9. Simpli�ed spaghetti stack | simple case.

which contains data local to an access module. Associated with each basic frame
is a counter of the number of active access modules. Initially, a basic frame and
extension are allocated contiguously at the end of the stack, with the counter set to
one. The use of a coroutine, for example, would cause a copy of the frame extension
to be made so the returns may go to di�erent continuation points. On exit from an
access module, the appropriate extension is deleted, and the basic frame is freed if
no other extension references it (that is, the extension count is one). The end of
stack pointer is then adjusted appropriately. When control returns to an extension,
if active frames exist between the extension and the end of the stack, it is moved
to the end to allow it to allocate new frames. Thus, the stack is split into various
segments. Compaction is performed as necessary to prevent stack over
ow, since
the stack may have a tendency to be ever increasing.
Since our model does not require more than one extension per frame, we can

simplify the method and reduce the overhead on function calls and returns. We
maintain a single stack, called a simpli�ed spaghetti stack, that contains the in-
terleaved frames of the continuations.9 In a simpli�ed spaghetti stack, new stack
frames are allocated o� the global stack pointer. We maintain the invariant that
the global stack pointer always marks the end of a live frame. The exit routine for
a frame is split into two parts: deactivation and deallocation. If a procedure whose
frame is in the middle of the stack exits, it is deactivated by marking it as garbage.
If a frame at the end of the stack exits, the global stack pointer is adjusted, thus
deactivating and deallocating the frame simultaneously. Additionally, the stack
pointer is adjusted to the end of the live frame nearest the end of the stack, which
deallocates any garbage frames immediately below it.
To implement deactivation, one word of memory in each frame, splink, is reserved

for stack management information. If the frame is live, then a null pointer is stored
at splink. Otherwise, splink contains a pointer to the beginning of the frame. By
placing this word at the end of each frame, these pointers form linked lists of garbage
frames. To maintain the invariant, after deallocating a live frame at the end of the
stack, it is merely necessary to traverse the list until reaching a null pointer, and
then set the global stack pointer to the location containing the null pointer.
Figure 9 provides an example of this process. Assume that initially the procedure

9A similar method, called a meshed stack, was developed by Hogen and Loogen [1993] in the
context of parallel implementations of functional or logic languages.

www.manaraa.com

Supporting Dynamic Data Structures on Distributed-Memory Machines � 17

1
F

d

e

F

d

e

G

2
F

d

e

G

3
F

d

e

G

4
F

d

e

G

5
F

d

e

G

6
F
7

sp

sp sp sp sp sp

sp

Fig. 10. Simpli�ed spaghetti stack | complex case.

F is executing. When F calls G, a new frame is allocated at the end of the stack.
Notice that there are live frames between F and the end of the stack that belong to
another thread of execution. When G exits, since the preceding frame (e) is live,
the stack returns to the initial state. Figure 10 provides a more complex example.
Again, F calls G. G migrates, and the run-time system gives control to e. The
frame e is not at the end of the stack; hence, when it exits, a pointer is placed
at the end of its frame marking it as garbage. The exit for d is similar. When G
resumes execution and exits, its frame is deactivated. Since it is at the end of the
stack, the list of garbage frames will be followed until a null pointer is reached (in
the frame labeled F), thus deallocating all of the garbage frames.

The overhead resulting from our simpli�ed spaghetti stacks is low. One extra
instruction is required on entry to store zero at splink. The expected exit path
(topmost frame, with live frame underneath), requires four additional instructions
(an add, one load, and two conditional branch instructions) over the basic stack
exit code for the i860 and six additional instructions (three adds, one load, and two
conditional branches) for the CM-5.

On the CM-5, we have implemented an additional optimization, called express
checkout, that maintains a bit that indicates that the current stack frame is at the
end of the stack with a live frame below it (the common case). This optimization
reduces the cost of the stack exit sequence from six instructions to three instructions.

5.3.1 Discussion. There is one problem with the scheme that we have proposed.
Since the simpli�ed spaghetti stack scheme does not deallocate dead frames im-
mediately, an Olden program could run out of stack space unnecessarily. Olden
guarantees that at most two copies of any stack frame will be present in the sys-
tem, one on the \home processor," and one on the current processor. We can only
bound the size of a stack on a particular processor by the number of frames that
could be live theoretically, even if, in an actual run, frames not at the end of the
stack become dead sooner. We can achieve optimal stack use by performing com-
paction as necessary on entry to the run-time system. It su�ces to check the stack
explicitly in the run-time system, because dead frames that are not deallocated can
only be generated by calls to the run-time system. A metric based on fragmentation
of the stack or the remaining capacity of the stack can be used to determine when
the stack needs to be compacted. The cost of such checks is small. In our expe-

www.manaraa.com

18 � A. Rogers et al.

rience, the additional stack growth is small, and in our prototype implementation
we do not check for stack over
ow.
We chose spaghetti stacks as a compromise between multiple disjoint stacks and

heap-allocated stacks. Our �rst implementation used multiple disjoint stacks, but
this incurred excessive copying overhead and lead to implementation di�culties.
A heap-allocated approach might be the best design choice, since our stack us-
age patterns would allow a simple \deallocate-on-return" policy to be used. Our
principle reason for not using heap allocation is historical; we started from a exist-
ing stack-based compiler and did not want to make more changes than necessary.
Furthermore, the spaghetti stacks make it easy to use code compiled by Olden's
compiler with existing system libraries.

6. RESULTS

The previous section described our prototype implementations of Olden for the
Intel iPSC/860 and the Thinking Machines CM-5. In this section, we report re-
sults for �ve benchmarks: TreeAdd, Power, Bitonic Sort, Traveling Salesman, and
Voronoi Diagram. TreeAdd is very simple and has ideal locality. Power has a sim-
ilar structure, but is more computationally intensive. Bitonic Sort is a relatively
complex algorithm that has two levels of recursion and complex locality patterns.
We experimented with two versions of Bitonic Sort, which we call Original Bitonic
Sort and Bitonic Sort. The di�erence between the two is an extra call to malloc
in Original Bitonic Sort. Traveling Salesman is a classic divide-and-conquer algo-
rithm. And �nally, Voronoi Diagram is a classic divide-and-conquer algorithm that
uses a di�erent method for merging subresults. We include it because it illustrates
a problem with our model. All of these benchmarks use trees as their primary data
structures.
We performed our experiments on a 16-node iPSC/860 at Princeton and on

CM-5s at two National Supercomputing Centers: NPAC at Syracuse University
and NCSA at the University of Illinois. The raw data from the experiments are
given in Tables I and II. The timings given for the iPSC/860 are from single
runs. Timings on this machine do not vary signi�cantly between runs. The timings
reported for the CM-5 are averages over three runs done in dedicated mode. Each
benchmark includes a timing for a sequential implementation (sequential), which
was compiled using our compiler, but without the overhead of futures, pointer
testing, or the spaghetti stack, and a one-processor implementation (one) which
includes this overhead.
The benchmarks were hand-annotated to include future calls, touches, and a

variant of the local annotation. The programs were annotated aggressively. Our
goal was to show that the execution model allows e�cient parallelization. We do
not claim that the annotated programs could be generated automatically using
existing compiler technology.

6.1 TreeAdd

TreeAdd is a very simple program that recursively walks a tree, summing each
subtree (see Figure 7). We report results for a balanced, binary tree of size 1024K
nodes in Figure 11. The tree is allocated using the allocation scheme presented
in Figure 1. The subtrees at a �xed depth in the tree are equally distributed.

www.manaraa.com

Supporting Dynamic Data Structures on Distributed-Memory Machines � 19

Table I. iPSC/860 Timings in Seconds

Processors
Benchmarks sequential one 2 4 8 16

TreeAdd (1024K) 1.94 2.62 1.31 0.66 0.33 0.17

Power (10,000) 517.28 517.46 260.23 130.43 65.88 34.20

Original Bitonic Sort (32 K) 4.87 5.69 3.23 2.29 2.04 2.09
Original Bitonic Sort (128 K) 29.21 64.67 15.18 9.38 6.69 5.36
Bitonic Sort (32 K) 3.60 4.45 2.64 2.01 1.91 2.02
Bitonic Sort (128 K) 17.46 21.21 11.98 7.96 6.21 5.05

Traveling Salesman (32,767) 65.79 66.02 33.49 17.48 9.61 5.77

Voronoi Diagram (64K) 13.60 20.17 13.06 11.35 16.00 33.16

Table II. CM-5 Timings in Seconds

Processors
Benchmarks sequential one 2 4 8 16 32

TreeAdd (1024K) 4.49 5.94 2.99 1.50 0.75 0.37 0.19

Power (10,000) 286.59 313.04 160.75 79.73 43.87 25.03 11.87

Original Bitonic Sort (32 K) 8.50 10.79 5.80 3.49 2.40 1.88 1.67
Original Bitonic Sort (128 K) 40.66 52.56 27.15 15.72 9.86 6.65 4.89
Bitonic Sort (32 K) 6.55 8.48 4.93 2.90 2.10 1.75 1.64
Bitonic Sort (128 K) 31.83 41.18 21.81 13.08 8.52 5.97 4.40

Traveling Salesman (32,767) 43.35 45.45 22.58 11.72 6.47 3.91 2.74

Voronoi Diagram (64K) 48.46 62.88 38.03 25.87 24.83 39.33 69.30

12 4 8 12 16 20 24 28 32

Processors

12
4

8

12

16

20

24

28

32

Sp
ee

du
p

TreeAdd (860)
TreeAdd wrt one (860)
TreeAdd (CM5)
TreeAdd wrt one (CM5)

Fig. 11. TreeAdd performance.

www.manaraa.com

20 � A. Rogers et al.

12 4 8 12 16 20 24 28 32

Processors

12
4

8

12

16

20

24

28

32

Sp
ee

du
p

Power (860)
Power (CM5)

Fig. 12. Power performance.

The lower two curves plot the true speedup, that is, sequential time/parallel time.
They represent parallel e�ciencies of 72% for the i860 and 74% for the CM-5.
The e�ciencies are not perfect because there is very little real work over which to
amortize the overhead of the futures, pointer tests, and the spaghetti stack. The
upper curves plot speedup using the one-processor implementation, rather than the
sequential implementation, as the baseline. These curves display near-perfect linear
speedup, because only P�1, where P is the number of processors, migrations occur.
This demonstrates that the execution model can exploit available parallelism.

6.2 Power Pricing

Power solves the Power-System-Optimization problem, which can be stated as fol-
lows: given a power network represented by a tree with the power plant at the root
and the customers at the leaves, use local information to determine the prices that
will optimize the bene�t to the community [Lumetta et al. 1993]. The computation
executes a series of phases until convergence is reached. Each phase has a down-
ward pass that propagates pricing information from the root to the customers and
an upward pass that propagates demand information from the customers to the
root. We use the input con�guration from Lumetta et al. [1993]: one substation;
10 main feeders from the root; each feeder branches to 20 lateral nodes; each lateral
node is the head of a line of �ve branch nodes; and each branch has 10 leaves. In
all there are 1,201 internal nodes and 10,000 customers. The layout of the tree is
determined in the following way: the branch nodes are divided evenly among the
processors using a block distribution based on an in-order numbering of the tree.
The leaves are distributed on the same processor as the corresponding branch; lat-
erals are placed on the same processor as the head of their line of branches; and
the root is placed on Processor 0.
We report speedups for the whole program (including the time to build the tree)

in Figure 12. Power's behavior is very similar to TreeAdd's, but on a much smaller

www.manaraa.com

Supporting Dynamic Data Structures on Distributed-Memory Machines � 21

12 4 8 12 16 20 24 28 32

Processors

1

2

4

6

8

10

Sp
ee

du
p

Original BiSort (32K) (860)
Original BiSort (128K) (860)
Original BiSort (32K) (CM5)
Original BiSort (128K) (CM5)

12 4 8 12 16 20 24 28 32

Processors

1

2

4

6

8

10

Sp
ee

du
p

BiSort (32K) (860)
BiSort (128K) (860)
BiSort (32K) (CM5)
BiSort (128K) (CM5)

Fig. 13. Bitonic Sort performance.

tree. The main di�erence between them is that a substantial amount of work is
done at the leaves of the tree in Power. Our results are comparable to Lumetta et
al.'s results.

6.3 Bitonic Sort

Bitonic Sort [Bilardi and Nicolau 1989] allocates a random set of integers and per-
forms two sorts on them: one forward and one backward. A binary tree is used
to store the numbers. First, the algorithm creates bitonic sequences in both sub-
trees, and then merges them to generate the sorted result. The merge phase swaps
subtrees to create two disjoint bitonic sequences, and then performs two recursive
calls on these sequences. The data have been placed on the processors such that
the subtrees at a �xed depth are evenly distributed over the available processors,
and the benchmark has been modi�ed to maintain this layout following the sort.
We report speedup only for the sorting phases to avoid having the expensive and
easily parallelizable tree-building phase skew the results. The graph in the left half
of Figure 13 contains four curves: two di�erent problem sizes (32K, 128K numbers)
for each implementation of Original Bitonic Sort. These implementations perform
respectably on a medium-sized problem (128K numbers), but they perform an un-
necessary malloc for each recursive sort, which increases the amount of work per
call. The �gure in the right half of Figure 13 displays the curves for an improved
Bitonic Sort that does not include the extra call to malloc. It still displays paral-
lelism, but not as much as the original version.
System overhead accounts for a loss of about 30% of the speedup. Even without

this overhead, this benchmark would not show perfect speedup because the cost of
moving the subtrees to maintain locality for the second sort is expensive.

www.manaraa.com

22 � A. Rogers et al.

1 2 4 8 12 16 20 24 28 32

Processors

1

4

8

12

16

Sp
ee

du
p

TSP (860)
TSP (CM5)

Fig. 14. Traveling Salesman performance.

6.4 Traveling Salesman

This benchmark computes an estimation of the best hamiltonian circuit for the
Traveling Salesman problem. The program is based on an implementation of
Karp's [1977] partitioning algorithm by M�uller [1993]. In our implementation, how-
ever, we assume the cities are given in a tree that alternately divides a set of points
by X or Y coordinate at each level. Rather than computing an exponential exact
solution for small sizes, following M�uller, we use the closest-point heuristic [Cormen
et al. 1989].
The tree is laid out using the allocation scheme presented in Figure 1. We report

results for computing a tour for 32,767 uniformly distributed points in Figure 14.
These results do not include the cost of the tree-building phase.

6.5 Building Voronoi Diagrams

The Voronoi Diagram benchmark [Guibas and Stol� 1985; Lee and Schachter 1980]
generates a random set of points and computes a Voronoi Diagram for these points.
The points are stored in a balanced binary tree sorted by X coordinate. To compute
a Voronoi Diagram, the algorithm computes Voronoi Diagrams of the two subtrees
recursively (thereby dividing the set of points at the median), and merges them
to form the �nal result. The merge phase walks along the convex hull of the two
subdiagrams, and adds edges to knit them together to form the Voronoi Diagram
for the whole set. The points are assigned to processors so that the subtrees at a
�xed depth are evenly distributed.
In Figure 15, we report the speedup obtained for building the Voronoi Diagram

for 64K points. The reported speedup does not include the cost of generating
the points or building the tree used to represent the sets of points. This example
displays almost no parallelism for two reasons. First, the merge phase is sequential
and represents a substantial fraction of the computation. But more importantly,
since later merge phases reference subsets alternately on di�erent processors, the

www.manaraa.com

Supporting Dynamic Data Structures on Distributed-Memory Machines � 23

1 2 4 8 12 16

Processors

1

2

4

6

8

Sp
ee

du
p

Voronoi (860)
Voronoi (CM5)

Fig. 15. Voronoi Diagram performance.

available parallelism is swamped by the cost of the \ping-pong" migrations that
occur during these merges. Migrations are expensive in our current implementation,
because messages are expensive.10

6.6 Discussion and Future Work

In early experiments, we observed superlinear speedup for several of these bench-
marks. We traced this to the quadratic behavior of the iPSC/860's memory al-
location routines. The CM-5 su�ers from a related problem: allocating memory
from the operating system requires a global synchronization. We reduced the e�ect
of these problems by calling malloc only a few times and managing the acquired
storage explicitly.
The overhead of our technique includes the cost of pointer testing, capturing

futures, and managing the spaghetti stack. We can measure the overhead for a
benchmark by computing the di�erence between the sequential and one processor
implementations. Pointer testing represents a signi�cant component of this over-
head. On the iPSC/860, pointer testing accounts for between 44% and 80% of the
overhead. On the CM-5, it accounts for 24% to 80% of the overhead. It may be
possible to reduce this overhead by using the address translation hardware and a
user-level trap handler to detect and manage nonlocal references. The e�ectiveness
of such a scheme will depend heavily on the cost of servicing a user-level trap [Appel
and Li 1991]. We are currently experimenting with an implementation of Olden
built on top of the Tempest/Blizzard system from the Wisconsin Wind Tunnel
group [Schoinas et al. 1994], which provides a simple mechanism for registering
user-level handlers that are invoked on a nonlocal reference.
Finally, the Voronoi Diagram benchmark points out that our model is not the �-

nal solution to the problem of parallelizing pointer-based programs for distributed-

10We havemeasured the cost of sending a 250-byte message, which is the average size of a migration
message, as 496�s on the iPSC/860 and 546�s on the CM-5.

www.manaraa.com

24 � A. Rogers et al.

memory machines. Our results indicate that in this case, and others, it may be
better to use software caching rather than computation migration. The messages
used for caching are much cheaper, and when data from multiple processors need
to be examined simultaneously, they can reduce communication costs substantially.
We have implemented a simple user-invalidate cache using Active Messages [von
Eicken et al. 1992] on the CM-5, and are exploring how this can be used to im-
prove performance. Initial results have been quite encouraging. At present we
are experimenting with compile-time heuristics that automatically choose between
computation migration and software caching for each pointer dereference.

7. AUTOMATIC PARALLELIZATION

This article has concentrated on Olden's execution model. As mentioned earlier,
its design was in
uenced heavily by our intention to use it as the target for a
parallelizing compiler. In this section, we outline brie
y the compiler analyses that
are needed to determine which subcomputations may be executed in parallel safely,
and where it is best to place the futurecall and touch operations. See Rogers
et al. [1993] for more details.
In order to support this analysis, we can build upon the techniques previously

proposed in the context of parallelizing imperative programs with recursive data
structures [Hendren 1990; Hendren and Nicolau 1990; Hendren et al. 1992], and the
Curare restructuring compiler for Lisp [Larus 1989; Larus and Hil�nger 1988a;
1988b]. In both these cases, the objective is to analyze the program to determine
which computations refer to disjoint pieces of the hierarchical data structure, and
then to use this information to insert parallel function calls or futures automatically.
For our purposes, we plan to build on the path matrix analysis [Hendren 1990;

Hendren and Nicolau 1990], an interprocedural analysis designed to determine stati-
cally if the data structures are indeed tree-like, and to approximate the relationships
between di�erent parts of the data structure. A typical analysis provides informa-
tion about the disjointness of subtrees, or the noncircularity of lists. Based on
information available from this analysis, we have de�ned the appropriate tests to
determine when it is safe to introduce futures. For a typical divide-and-conquer-
type recursive procedure, we say that the procedure consists of precomputation,
followed by the recursive calls implementing the conquer part, followed by post-
computation. Our analysis must be used to: determine if it is safe to execute the
various subcomputations for the conquer step in parallel, determine if the precom-
putation can be overlapped with the conquer step, and place the touches in the
latest possible position to ensure maximum concurrency.

8. RELATED WORK

Programming support for parallel machines is a very active area of research. Out
of necessity we restrict our discussion to papers that seem particularly relevant to
our goal of supporting pointer-based dynamic data structures.
Carriero et al.'s [1986] work on distributed data structures on Linda shares a

common objective with Olden, namely, providing a mechanism for distributed pro-
cessors to work on a shared linked structures. In the details, however, the two
approaches are quite di�erent. The Linda model provides a global shared address
space (tuple space), but no control over the actual assignment of data to processors.

www.manaraa.com

Supporting Dynamic Data Structures on Distributed-Memory Machines � 25

Also, while Linda allows the
exibility of arbitrary distributed data structures, in-
cluding arrays, graphs, and sets, it is an explicitly parallel model that requires the
programmer to parallelize a program by hand. The distributed data structures
in Olden are restricted to hierarchical structures at present, but we provide exact
control over data layout and have a run-time model that we believe is amenable to
automatic parallelization.
Hudak and Smith's [1986] \Para-functional programming" model has some sim-

ilarity with Olden. In both cases, sequential semantics are preserved, and anno-
tations are used to distribute the computation. In para-functional programming,
however, the annotations are mapping expressions, which specify the processor to
run the annotated expression, whereas in Olden, we annotate the allocations and
let the data layout determine the location of computations. The other main dif-
ference is that Hudak and Smith start from a referentially transparent language,
which makes preserving sequential semantics trivial.
Emerald [Jul et al. 1988] and Amber [Chase et al. 1989], which are object-

oriented languages developed at the University of Washington, employ thread and
object migration mechanisms to improve locality. Emerald was designed for pro-
gramming distributed systems. Amber permits an application program to use a
network of homogeneous processors as an integrated multiprocessor. These lan-
guages provide primitives for object location and mobility, and constructs to allow
the programmer to indicate whether the thread or the object(s) should move to
satisfy an invocation that references a remote object. In cases where the program-
mer has not speci�ed a preference, the compiler uses several heuristics to determine
which mechanism is appropriate.
Prelude, a language being developed at MIT [Hsieh et al. 1993; Weihl et al.

1991], includes a migration mechanism similar to ours. The goal of the Prelude
project is to develop a language and support system for writing portable parallel
programs. Prelude is an explicitly parallel language that provides a computation
model based on threads and objects. Annotations are added to a Prelude program
to specify architecture-speci�c implementation details. These annotations specify
which of several mechanisms should be used to implement an object or thread.
The language supports a variety of mechanisms including remote procedure call,
object migration, and computation migration. The goals of the Olden and Pre-
lude projects are di�erent. Our focus is on e�ectively parallelizing sequential C
programs; thread migration is simply part of the underlying model. Their goal is
to develop a new language that facilitates writing portable parallel programs using
computation migration as one possible tool.
Orca[Bal et al. 1992] also provides an explicitly parallel programming model

based on threads and objects. Orca hides the distribution of the data from the
programmer, but is designed to allow the compiler and run-time system to imple-
ment shared objects e�ciently. The Orca compiler produces a summary of how
shared objects are accessed that is used by its run-time system to decide if a shared
object should be replicated, and if not, where it should be stored. Operations on
replicated and local objects are processed locally; operations on nonlocal objects
are handled using a remote procedure call to the processor that owns the object.
Split-C [Culler et al. 1993] is a parallel extension of C that provides shared-

memory, message-passing, and data-parallel abstractions to the programmer. Split-

www.manaraa.com

26 � A. Rogers et al.

C provides a global address space that maintains a clear concept of locality by
providing both local and global pointers. Local pointers are guaranteed to point
to the local processor, whereas, global pointers may point to any (possibly remote)
location. Split-C provides a variety of primitives to manipulate global pointers
e�ciently. The way work is allocated is a major di�erence between Olden and
Split-C. In Olden, work follows the data. In Split-C, the programmer places the
work and uses the provided routines to retrieve any necessary data.
In a related piece of work, Lumetta et al. [1993] describe a global object space

abstraction that provides a way to decouple the description of an algorithm from
the description of an optimized layout of its data structures. The system is also
based on a global pointer abstraction and provides routines for allocating data
objects, for asynchronous reading of a data object, and for synchronous writing of
an object. This object system is intended to be used in explicitly parallel programs
and like Split-C has a work allocation model di�erent from Olden's.
The Concert system [Chien et al. 1993; Karamcheti and Chien 1993] provides

compiler and run-time support for e�cient execution of �ne-grained concurrent
object-oriented programs. Concert provides a globally shared object space, common
programming idioms (such as RPC and tail forwarding), inheritance, and some
concurrency control. Objects are single threaded and communicate asynchronously
through message passing (invocations). Concert also provides parallel collections
of data, structures for parallel composition, �rst-class messages, and continuations.
A major goal of the concert project is to provide e�cient support for �ne-grain
concurrency.
Cid [Nikhil 1994], a recently proposed extension to C, supports a threads-and-

locks model of parallelism. Cid threads are lightweight, and the thread creation
mechanism allows the programmer to name a speci�c processing element on which
the thread should be run. Unlike Olden, Cid threads cannot migrate once they have
begun execution. This makes it awkward to take advantage of data locality while
traversing a structure iteratively. Cid also provides a global object mechanism that
is based on global pointers. Unlike Split-C, these pointers cannot be dereferenced
directly. Instead, the programmer requests access to the object explicitly using one
of several sharing modes (for example, read-only) and is given a pointer to a local
copy in return. Cid's global objects use implicit locking, and the run-time system
maintains consistency. A major design goal of Cid is that Cid programs be able to
run on existing hardware using existing compilers. This goal supports portability,
but may hamper e�ciency.

9. CONCLUSIONS

We have presented a new approach supporting programs that use pointer-based
dynamic data structures on message-passing machines. In developing our new
approach we have noted a fundamental problem with trying to apply run-time
resolution techniques, currently used to produce SPMD programs for array-based
programs, to pointer-based programs. Array data structures are directly address-
able. In contrast, dynamic data structures must be traversed to be addressable.
This property of dynamic data structures precludes the use of simple local tests for
ownership, and therefore makes the run-time resolution model ine�ective.

www.manaraa.com

Supporting Dynamic Data Structures on Distributed-Memory Machines � 27

Our mechanism avoids these fundamental problems by matching more closely
the dynamic nature of the data structures. Rather than making each processor
decide if it should execute a statement by determining if it owns the relevant piece
of the data structure, we use a thread migration strategy that migrates the thread
of computation automatically to the processor that owns the data. Coupled with
the thread migration technique is our futurecall mechanism, which introduces
parallelism by allowing processors to split the thread of computation.
We have implemented our execution mechanism on the iPSC/860 and the CM-5,

and have used this system to run some sample programs. Our results are en-
couraging, especially in light of the poor message-passing performance of current
machines. We believe that our model will achieve better results as communication
systems improve. Our experiences also point out the importance of merging re-
sults computed on di�erent processors to the performance of divide-and-conquer
programs. We plan to focus on this issue as part of our continuing research.

APPENDIX
SAMPLE FUTURECALL CODE

The following is an example of the code sequence for futurecall in Olden's iPSC/860
implementation.

// Intel i860 Futurecall with integer return value

// Future cell is in r30

// r14 is future cell stack pointer

st.l r0, 0(r30) // Mark future cell empty/full

st.l r14, 4(r30) // Store next field

st.l fp, 12(r30) // Store fp

addu 0, r30, r14 // Push future cell

call _TreeAdd // Call TreeAdd

addu 32, r1, r1 // Delay slot of TreeAdd call

// Modify return address, which

// is stored in r1, to point to

// the first subsequent st.l

// Abnormal Return (Future had been stolen)

.long _TreeAdd.cs // Pointer to register unwinding code

st.l r16, 16(fp) // Store return value

mov fp, r19 // Pass fc pointer as argument to stolen

ld.l 12(fp), fp // Load fp from future cell

orh h%_TreeAdd.cs, r0, r18

br ___stolen // Call stolen with register unwinding

or l%_TreeAdd.cs, r18,r18 // address as argument

// Normal Return (Future has not been stolen)

.long _TreeAdd.cs // Pointer to register unwinding code

st.l r16, 16(r14) // Store value in future cell

ld.l 4(r14), r14 // Pop future stack

L.14:

www.manaraa.com

28 � A. Rogers et al.

The following is an example of the code sequence for futurecall in Olden's
CM-5 implementation.

! CM-5 Future call with integer return value

! Future cell is located at %r10

! Future stack register is %l5

st %l5,[%r10+4] ! Store next field

mov %r10,%l5 ! Place this fc at top of stack

call _TreeAdd; add %o7,12,%o7 ! Call routine, modify return address

.word __TreeAdd.cs ! Pointer to register unwinding code

ba ___stolen; st %o0,[%fp+16] ! Abnormal return

! (Future has been stolen)

! jump to steal & store ret val

.word __TreeAdd.cs ! Pointer to register unwinding code

st %o0,[%l5+16] ! store return value

ld [%l5+4],%l5 ! Pop future cell stack

ACKNOWLEDGMENTS

Dave Hanson and Chris Fraser wrote lcc and answered many questions about it.
Dave Hanson suggested the use of spaghetti stacks. Kai Li and the Intel Super-
computer Systems Division provided access to the iPSC/860 that we used for our
experiments. The National Supercomputing centers at the University of Illinois
(NCSA) and Syracuse University (NPAC) provided access to their CM-5s. Josh
Barnes provided an implementation of Barnes-Hut. Steve Lumetta provided an
implementation of Power. Joe Hummel suggested Voronoi Diagram as a possible
application; we obtained the initial implementation, written by L. Guibas and J.
Stol�, from Netlib at ORNL. J�org M�uller recommended TSP and provided an initial
implementation. The many suggestions made by Mark Hill, Mukund Raghavachari,
and the anonymous reviewers helped to improve this article.

REFERENCES

Allen, R. and Kennedy, K. 1987. Automatic translation of FORTRAN programs to vector
form. ACM Trans. Program. Lang. Syst. 9, 4 (Oct.), 491{542.

Allen, F., Burke, M., Charles, P., Cytron, R., and Ferrante, J. 1988. An overview of
the PTRAN analysis system for multiprocessing. J. Parallel Distrib. Comput. 5, 5 (Oct.),
617{640.

Amarasinghe, S. and Lam, M. 1993. Communication optimization and code generation for
distributed memory machines. In Proceedings of the SIGPLAN '93 Conference on Pro-
gramming Language Design and Implementation. ACM, New York, 126{138.

Anderson, J. and Lam, M. 1993. Global optimizations for parallelism and locality on scal-
able parallel machines. In Proceedings of the SIGPLAN '93 Conference on Programming
Language Design and Implementation. ACM, New York, 112{125.

Appel, A. and Li, K. 1991. Virtual memory primitives for user programs. In Proceedings of
the 4th International Conference on Architectural Support for Programming Languages and
Operating Systems. ACM, New York, 96{107.

Bal, H., Kaashoek, M. F., and Tanenbaum, A. 1992. Orca: A language for parallel program-
ming of distributed systems. IEEE Trans. Softw. Eng. 18, 3 (Mar.), 190{205.

Bilardi, G. and Nicolau, A. 1989. Adaptive bitonic sorting: An optimal parallel algorithm
for shared-memory machines. SIAM J. Comput. 18, 2, 216{228.

www.manaraa.com

Supporting Dynamic Data Structures on Distributed-Memory Machines � 29

Bobrow, D. and Wegbreit, B. 1973. A model and stack implementation of multiple environ-
ments. Commun. ACM 16, 10, 591{603.

Callahan, D. and Kennedy, K. 1988. Compiling programs for distributed-memory multipro-
cessors. J. Supercomput. 2, 2 (Oct.), 151{169.

Carlisle, M., Rogers, A., Reppy, J., andHendren, L. 1994. Early experiences with Olden. In
Languages and Compilers for Parallel Machines: 6th International Workshop, U. Baner-
jee, D. Gelernter, A. Nicolau, and D. Padua, Eds. Lecture Notes in Computer Science,
vol. 768. Springer-Verlag, Berlin, 1{20.

Carriero, N., Gelernter, D., and Leichter, J. 1986. Distributed data structures in Linda.
In Conference Record of the 13th Annual ACM Symposium on Principles of Programming
Languages. ACM, New York, 236{242.

Chase, J., Amador, F. G., Lazowska, E., Levy, H. M., and Littlefield, R. J. 1989. The
Amber system: Parallel programming on a network of multiprocesors. In Proceedings of
the 12th ACM Symposium on Operating Systems Principles. ACM, New York, 147{158.

Chien, A., Karamcheti, V., and Plevyak, J. 1993. The Concert system{compiler and run-
time support for e�cient, �ne-grained concurrent object-oriented programs. Tech. Rep.
UIUCDCS-R-93-1815, Dept. of Computer Science, University of Illinois, Urbana, Ill. June.

Cormen, T., Leiserson, C., and Rivest, R. 1989. Introduction to Algorithms. McGraw-Hill,
New York.

Culler, D. E., Dusseau, A., Goldstein, S. C., Krishnamurthy, A., Lumetta, S., von
Eicken, T., and Yelick, K. 1993. Parallel programming in Split-C. In Proceedings of
Supercomputing 93. IEEE Computer Society Press, Los Alamitos, Ca., 262{273.

Fraser, C. W. and Hanson, D. R. 1995. A Retargetable C Compiler: Design and Implemen-
tation. Benjamin/Cummings, Redwood City, Ca.

Gerndt, M. 1990. Automatic parallelization for distributed-memory multiprocessing systems.
Ph. D. thesis, University of Bonn.

Guibas, L. and Stolfi, J. 1985. General subdivisions and voronoi diagrams. ACM Trans.
Graph. 4, 2, 74{123.

Gupta, R. 1992. SPMD execution of programs with dynamic data structures on distributed
memory machines. In Proceedings of the 1992 International Conference on Computer Lan-
guages. IEEE Computer Society Press, Los Alamitos, Ca., 232{241.

Halstead, R. H., Jr. 1985. Multilisp: A language for concurrent symbolic computation. ACM
Trans. Program. Lang. Syst. 7, 4 (Oct.), 501{538.

Hendren, L. J. 1990. Parallelizing programs with recursive data structures. Ph. D. thesis,
Cornell University, Ithaca, N.Y.

Hendren, L. J. and Nicolau, A. 1990. Parallelizing programs with recursive data structures.
IEEE Trans. Parallel Distrib. Syst. 1, 1, 35{47.

Hendren, L. J., Hummel, J., and Nicolau, A. 1992. Abstractions for recursive pointer data
structures: Improving the analysis and transformation of imperative programs. In Proceed-
ings of the SIGPLAN '92 Conference on Programming Language Design and Implemen-
tation. ACM, New York, 249{260.

Hiranandani, S., Kennedy, K., and Tseng, C. 1991. Compiler optimizations for FORTRAN
D on MIMD distributed memory machines. In Proceedings of Supercomputing 91. IEEE
Computer Society Press, Los Alamitos, Ca., 86{100.

Hogen, G. and Loogen, R. 1993. A new stack technique for the management of runtime
structures in distributed implementations. Tech. Rep. 3, RWTH Aachen.

Horwat, W., Chien, A., and Dally, W. 1989. Experience with CST: Programming and im-
plementation. In Proceedings of the SIGPLAN '89 Conference on Programming Language
Design and Implementation. ACM, New York, 101{108.

Hsieh, W., Wang, P., and Weihl, W. 1993. Computation migration: Enhancing locality for
distributed-memory parallel systems. InProceedings of the 4th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming. ACM, New York, 239{248.

www.manaraa.com

30 � A. Rogers et al.

Hudak, P. and Smith, L. 1986. Para-functional programming: A paradigm for programming
multiprocessor systems. In Conference Record of the 13th Annual ACM Symposium on
Principles of Programming Languages. ACM, New York, 243{254.

Jul, E., Levy, H., Hutchinson, N., and Black, A. 1988. Fine-grained mobility in the Emerald
system. ACM Trans. Comput. Syst. 6, 1, 109{133.

Karamcheti, V. and Chien, A. 1993. Concert | e�cient runtime support for concurrent
object-oriented programming languages on stock hardware. In Proceedings of Supercom-
puting 93. IEEE Computer Society Press, Los Alamitos, Ca., 598{607.

Karp, R. 1977. Probabilistic analysis of partitioning algorithms for the traveling-saleman prob-
lem in the plane. Math. Oper. Res. 2, 3 (Aug.), 209{224.

Koelbel, C. 1990. Compiling programs for nonshared memory machines. Ph. D. thesis, Purdue
University, West Lafayette, Ind.

Larus, J. R. 1991. Compiling lisp programs for parallel execution. Lisp Symb. Comput. 4, 1,
29{99.

Larus, J. R. 1989. Restructuring symbolic programs for concurrent execution on multiproces-
sors. Ph. D. thesis, University of California, Berkeley.

Larus, J. R. and Hilfinger, P. N. 1988a. Detecting con
icts between structure accesses.
In Proceedings of the SIGPLAN '88 Conference on Programming Language Design and
Implementation. ACM, New York, 21{34.

Larus, J. R. and Hilfinger, P. N. 1988b. Restructuring Lisp programs for concurrent exe-
cution. In Proceedings of the ACM/SIGPLAN PPEALS 1988 | Parallel Programming:
Experience with Applications, Languages and Systems. ACM, New York, 100{110.

Lee, D. T. and Schachter, B. J. 1980. Two algorithms for constructing a delaunay triangu-
lation. Int. J. Comput. Inf. Sci. 9, 3, 219{242.

Lumetta, S., Murphy, L., Li, X., Culler, D., and Khalil, I. 1993. Decentralized optimal
power pricing: The development of a parallel program. In Proceedings of Supercomputing
93. IEEE Computer Society Press, Los Alamitos, Ca., 240{249.

Mohr, E., Kranz, D. A., and Halstead, R. H., Jr. 1991. Lazy task creation: A technique
for increasing the granularity of parallel programs. IEEE Trans. Parallel Dist. Syst. 2, 3
(July), 264{280.

M�uller, J. 1993. Parallelverarbeitung auf workstation-clustern mittels express und network-
linda. Diplomarbeit in Elektrotechnik, RWTH-Aachen.

Nikhil, R. 1994. Cid: A parallel, \shared-memory" C for distributed-memorymachines. In Pro-
ceedings of the 7th Annual Workshop on Languages and Compilers for Parallel Computing,
Dept. of Computer Science, Cornell University, Ithaca, N.Y.

Roberts, E. S. and Vandevoorde, M. T. 1989. WorkCrews: An abstraction for controlling
parallelism. Tech. Rep. 42, DEC Systems Research Center, Palo Alto, Ca. April.

Rogers, A. and Pingali, K. 1989. Process decomposition through locality of reference. In
Proceedings of the SIGPLAN '89 Conference on Programming Language Design and Im-
plementation. ACM, New York, 69{80.

Rogers, A., Reppy, J., and Hendren, L. 1993. Supporting SPMD execution for dynamic
data structures. In Languages and Compilers for Parallel Machines: 5th International
Workshop, U. Banerjee, D. Gelernter, A. Nicolau, and D. Padua, Eds. Lecture Notes
in Computer Science, vol 757. Springer-Verlag, Berlin, 192{207.

Schoinas, I., Falsafi, B., Lebeck, A. R., Reinhardt, S. K., Larus, J. R., and Wood,
D. A. 1994. Fine-grain access control for distributed shared memory. In Proceedings of the
6th International Conference on Architectural Support for Programming Languages and
Operating Systems. ACM, New York, 297{306.

von Eicken, T., Culler, D. E., Goldstein, S. C., and Schauser, K. E. 1992. Active mes-
sages: A mechanism for integrating communication and computation. In Proceedings of
the 19th Annual International Symposium on Computer Architecture. ACM, New York,
256{266.

www.manaraa.com

Supporting Dynamic Data Structures on Distributed-Memory Machines � 31

Weihl, W., Brewer, E., Colbrook, A., Dellarocas, C., Hsieh, W., Joseph, A., Wald-
spurger, C., and Wang, P. 1991. Prelude: A system for portable parallel software.
MIT/LCS 519, Massachusetts Institute of Technology, Cambridge, Mass.

Wolfe, M. 1989. Optimizing Supercompilers for Supercomputers. Pitman Publishing, London.

Zima, H., Bast, H., and Gerndt, M. 1988. SUPERB: A tool for semi-automaticMIMD/SIMD
parallelization. Parallel Comput. 6, 1, 1{18.

Received February 1994; revised August 1994; accepted November 1994.

